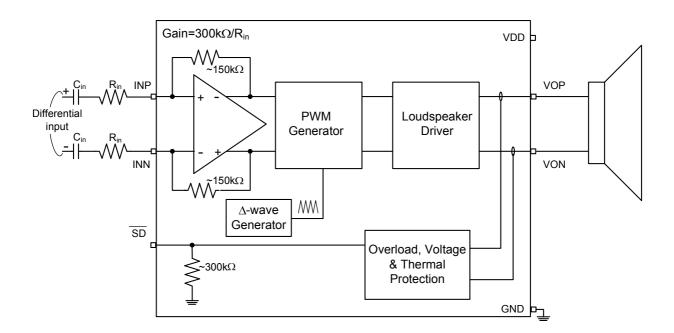


3W Mono Filter-less Class-D Audio Amplifier

Features

- Supply voltage range: 2.5 V to 5.5 V
- Support single-ended or differential analog input
- Low Quiescent Current
- Low Output Noise
- Low shut-down current
- Short power-on transient time
- Internal pull-low resistor on shut-down pins
- Short-circuit protection
- Over-temperature protection
- Loudspeaker power within 10% THD+N
 - 1.78W/ch into 8Ω loudspeaker
 - >3W/ch into 4Ω loudspeaker
- Loudspeaker efficiency
 - 93% @ 8Ω, THD+N=10%
 - 85% @ 4Ω, THD+N=10%
- MSOP-8L, TDFN-8L and 0.4mm ball pitch WLCSP-9L packages
- Integrated Feedback Resistor of 300kΩ

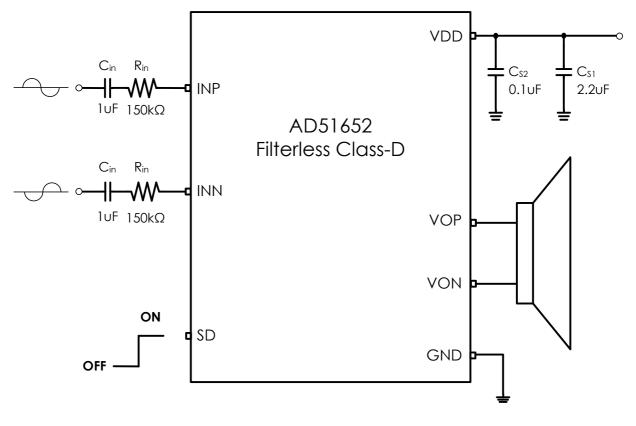

Applications

- Monitor audio
- PDA
- Portable multimedia devices
- Notebook computer
- Mobile phone

Description

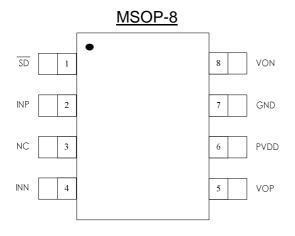
The AD51652 is a 3.0W mono, filter-less class-D audio amplifier. Operating with 5.0V loudspeaker driver supply, it can deliver 3.0W output power into 4 Ω loudspeaker within 10% THD+N or 2.6W at 1% THD+N.

The AD51652 is a mono audio amplifier with high efficiency and suitable for the notebook computer, and portable multimedia device.



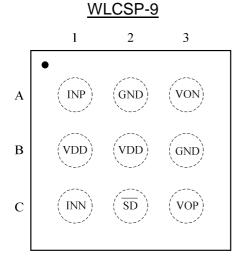
Functional Block Diagram

Preliminary


Typical Application Circuit

Note. Gain=2 V/V

Pin Assignments


Order information

AD51652-MH08NRR					
MH08	MSOP-8 Package				
NRR	RoHS & Halogen free				
	Rating: -40 to 85℃				
	Package in Tape & Reel				

TDFN-8 \overline{SD} 1 VON [____ 2 NC GND 3 6 INP VDD 9: Thermal pad 5 4 VOP INN

Order information

AD51652-FH08NRR				
FH08	TDFN-8 Package			
NRR	RoHS & Halogen free			
	Rating: -40 to 85℃			
	Package in Tape & Reel			

Order information

AD51652-WL09NRR

WL09	WLCSP-9 Package
NRR	RoHS & Halogen free
	Rating: -40 to 85°C
	Package in Tape & Reel

ESMT

Pin Description

NAME		PIN		IO	DESCRIPTION
	MSOP-8	TDFN-8	WLCSP-9	TYPE	DESCRIPTION
SD	1	1	C2	I	Shutdown AD51652 (Low active logic)
INP	2	3	A1	I	Positive differential input
NC	3	2	N/A	NC	No internal connect
INN	4	4	C1	I	Negative differential input
VOP	5	5	C3	0	Positive output
VDD	6	6	B2	Р	Power supply
GND	7	7	A2, B3	G	Power ground
VON	8	8	A3	0	Negative output
Thermal	N/A	9	N/A	G	Must be connected the package thermal
pad	IN/A	Э	IN/A	9	pad to PCB thermal land.

Available Package

Package Type	Device no.	<i>θ</i> _{JA} (°C/W)	Exposed Thermal Pad
MSOP-8		190	No
TDFN-8 (3x3mm)	AD51652	45.8	Yes
WLCSP-9		128	No

Absolute Maximum Ratings

SYMBOL	PARAMETER	MIN	MAX	UNIT
VDD	Supply for analog cells & loudspeaker driver	-0.3	6.0	V
	Input pins voltage	-0.3	5.5	V
T _{stg}	Storage temperature	-65	150	°C
TJ	Junction operating temperature	-40	150	°C

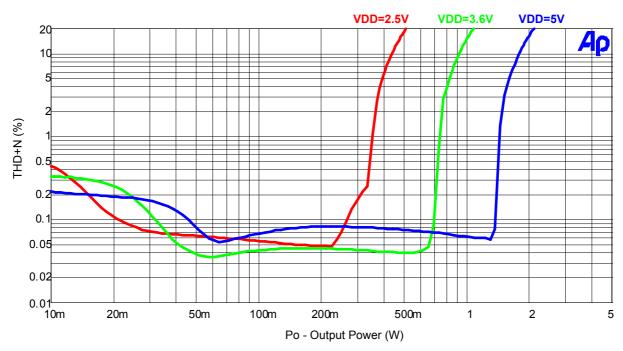
Recommended Operating Conditions

SYMBOL	PARAMETER	MIN	MAX	UNIT
VDD	Supply for analog cells & loudspeaker driver	2.5	5.5	V
V _{IH}	High-Level Input Voltage	1.3	-	V
V _{IL}	Low-Level Input Voltage	-	0.35	V
TJ	Junction operating temperature	-40	125	°C
Та	Ambient Operating Temperature	-40	85	°C

<u>General Electrical Characteristics (T_A=25°C)</u>

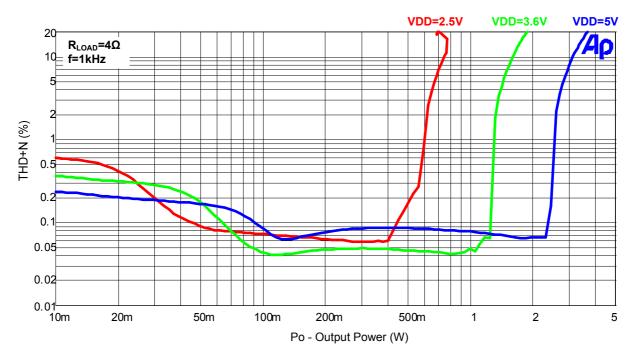
SYMBOL	PARAMETER	CONDITION	MIN	TYP	MAX	UNIT	
lq	Operating current	VDD=SD=5V,		3		mA	
Ч	Operating current	Output switching		3		IIIA	
I _{PD}	Supply current during	VDD=5.5V;		<1			
IPD	power-down mode	SD#=0		<1		μA	
V _{offset}	Output offset voltage	Input ac grounded,		. 1	5	mV	
V offset	Oulput onset voltage	VDD=2.5V ~ 5.5V		< 1	Э	IIIV	
Tsd	Junction temperature for driver shutdown			165		°C	
Thys	Temperature hysteresis for recovery from shutdown			20		°C	
f _{sw}	Switching rate of loudspeakers driver		250	300	350	kHz	
A_{V}	Gain		$\frac{270k\Omega}{R_{_{in}}}$	$\frac{300k\Omega}{R_{_{in}}}$	$\frac{330k\Omega}{R_{_{in}}}$	V/V	
Ton	Turn-on time	VDD = 3.6 V		1.7	4	msec	
R_{SC}	Loudspeaker short-circuit detect resistance	VDD = 5.0 V		2.8	3.2	ohm	

Electrical Characteristics and Specifications for Loudspeaker

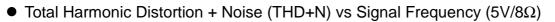

• Gain= 2 V/V, Load=8 Ω , f_{in}=1 kHz, C_{S1}=2.2uF, C_{S2}=0.1uF, T_A=25 $^{\circ}$ C (unless otherwise noted)

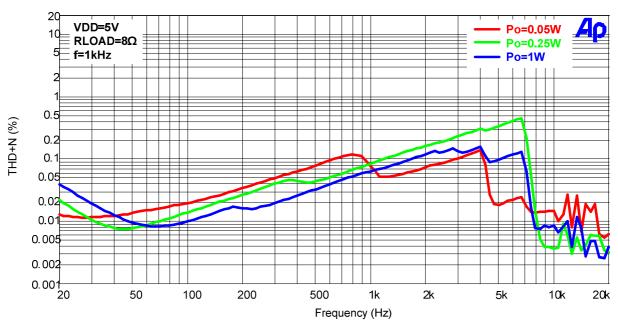
SYMBOL	PARAMETER	CC	ONDITION	MIN	TYP	MAX	UNIT
		VDD=5.0V	THD+N = 10 %		1.78		W
		VDD=5.0V	THD+N = 1 %		1.44		W
Б	PMS Output Dowor	VDD=3.6V	THD+N = 10 %		0.91		W
Po	RMS Output Power	VDD=3.0V	THD+N = 1 %		0.74		W
			THD+N = 10 %		0.43		W
		VDD=2.5V	THD+N = 1 %		0.35		W
	Total Harmonic Distortion	VDD=5.0V, F	Po=1.0W		0.035		%
THD+N	plus Noise	VDD=3.6V, Po=0.5W			0.039		%
		VDD=2.5V, Po=0.2W			0.058		%
SNR	Signal to Noise Ratio	VDD=5.0V, F	Po=1.0W		98		dB
	Dower Supply Dejection	VDD=3.6V, V	/ _{ripple} =200mVpp				
PSRR	Power Supply Rejection	Inputs ac gro	ounded with Ci=2µF		74		dB
	Ratio	f=217 Hz	f=217 Hz				
CMRR	Common-Mode Rejection	VDD=3.6V, V	/ _{IC} =1Vpp, f=217Hz		76		dB
V	Output integrated noise	VDD=3.6V			22		
v _n	V _n (A-weighted)		f _{in} =20Hz ~ 20kHz		23		μV
η	Efficiency (TDFN-8L)	VDD=5V, TH	D+N=10%		90		%

•	Gain= 2 V/V, Load=4 Ω , f _{in} =1 kHz, C _{S1} =2.2uF, C _{S2} =0.1uF, T _A =25 $^{\circ}$ C	(unless otherwise noted)
---	--	--------------------------

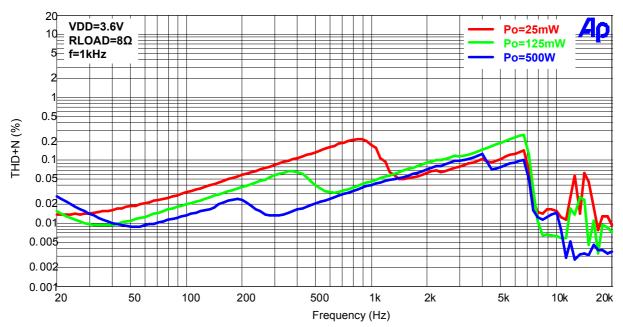

SYMBOL	PARAMETER	CON	NDITION	MIN	TYP	MAX	UNIT
		VDD=5.0V	THD+N = 10 %		3.2		W
		VDD=5.0V	THD+N = 1 %		2.6		W
	DMC Output Dower	VDD=3.6V	THD+N = 10 %		1.63		W
Po	RMS Output Power	VDD=3.6V	THD+N = 1 %		1.33		W
			THD+N = 10 %		0.74		W
		VDD=2.5V	THD+N = 1 %		0.6		W
	Total Llarmania Distortion	VDD=5.0V, Po	=2.0W		0.039		%
THD+N	Total Harmonic Distortion	VDD=3.6V, Po=1.0W			0.043		%
	plus Noise	VDD=2.5V, Po=0.5W			0.068		%
SNR	Signal to Noise Ratio	VDD=5.0V, Po	=1.8W		98		dB
	Dower Supply Rejection	VDD=3.6V, V _{rip}	_{ple} =200mVpp				
PSRR	Power Supply Rejection Ratio	Inputs ac grour	nded with Ci=2µF		77		dB
	Nalio	f=217 Hz					
CMRR	Common-Mode Rejection	VDD=3.6V, V _{IC} =1Vpp, f=217Hz			76		dB
V	Output integrated noise	VDD=3.6V			22		
V _n	(A-weighted)	f _{in} =20Hz ~ 20kHz			~~~		μV
η	Efficiency (TDFN-8L)	VDD=5.0V, TH	D+N=10%		85		%

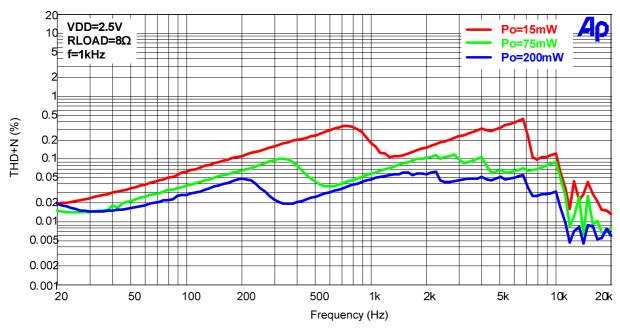
Typical Characteristics (Gain= 2 V/V, unless otherwise noted)



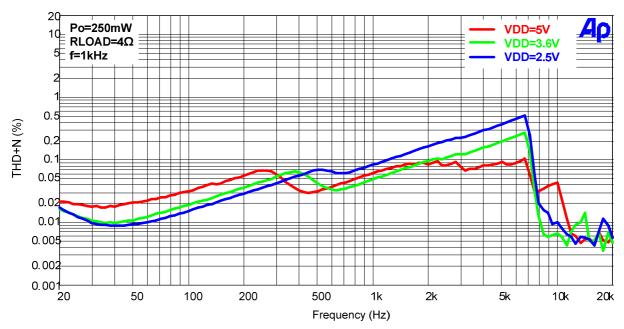

• Total Harmonic Distortion + Noise (THD+N) vs Output Power (8 Ω)

• Total Harmonic Distortion + Noise (THD+N) vs Output Power (4 Ω)

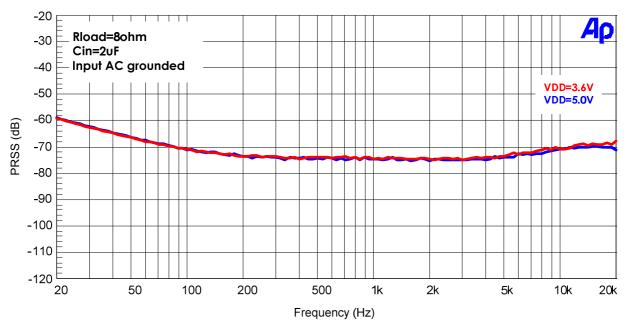




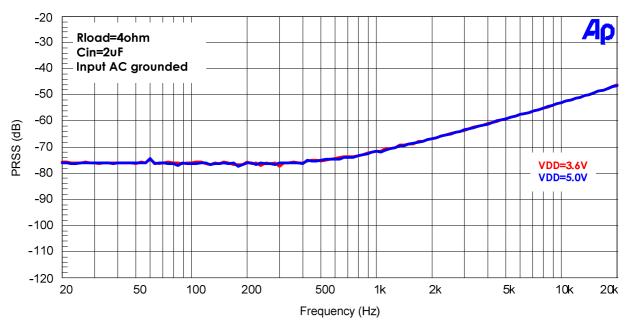
• Total Harmonic Distortion + Noise (THD+N) vs Signal Frequency (3.6V/8Ω)



• Total Harmonic Distortion + Noise (THD+N) vs Signal Frequency (2.5V/8Ω)



• Total Harmonic Distortion + Noise (THD+N) vs Signal Frequency (4 Ω)



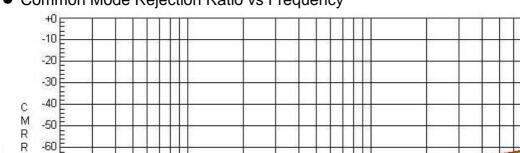
• Power Supply Rejection Ratio vs Frequency (8 Ω)

• Power Supply Rejection Ratio vs Frequency (4 Ω)

(db) -70 -80 -90 -100

-110

-120 E 20 AD)

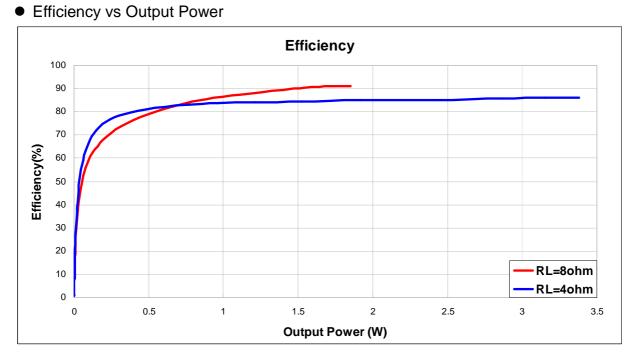

R=4ohm

R=8ohm

20k

10k

5k


• Common Mode Rejection Ratio vs Frequency

50

100

200

500

frequency (Hz)

1k

2k

Operation Descriptions

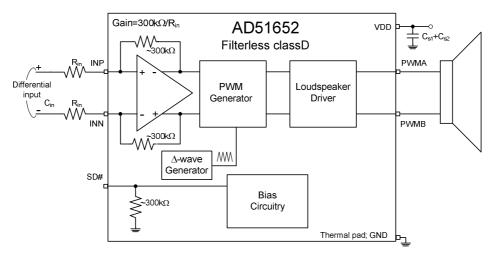
- Self-protection circuits (Typical values are used below.)
 - AD51652 has built-in over-temperature, overload and under-voltage detectors.
 - (i) If the internal junction temperature is higher than 165°C, the outputs of loudspeaker drivers will be disabled and connected to ground and the temperature hysteresis for AD51652 to return to normal operation is about 20°C. The variation of protected temperature is around 10%.
 - (ii) To protect loudspeaker drivers from current damage when the wires connected to loudspeakers are shorted to one another or shorted to GND, circuits for the detection of output loading are built in the AD51652. For normal operation, loudspeaker resistance is larger than 3.2Ω is required. Otherwise, overload detectors may activate. Once overload detector is active, loudspeaker drivers will be disabled and at low state. AD51652 will be recovery from overload fault by pulling SD# down to low and back to high after removing the short. Once the lines connected to loudspeakers are shorted to VDD, AD51652 will be burnt.
 - (iii) When the VDD voltage is lower than 2.3V, AD51652 will disable and loudspeaker drivers are at low state, cease AD51652 beside voltage detector circuit. When VDD becomes larger than 2.4V, AD51652 will return to normal operation.
- Anti-pop design

AD51652 is with anti-pop design. Annoying pop sounds during initial power on and power down/up are suppressed. When one of the operations mentioned above is applied, AD51652 will internally generate appropriate control signals to suppress pop sounds.

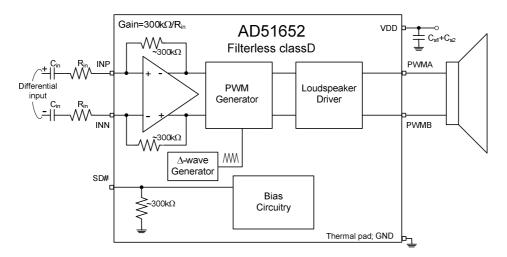
Application Circuit Information

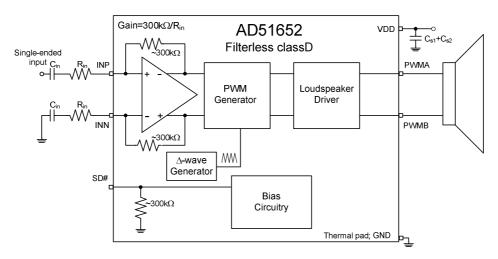
• Input resistors (R_{in}) and input capacitors (C_{in})

The total gain of the audio amplifier (AD51652) is set by input resistor (R_{in}) according to the following equation (a). The performance at low frequency (bass) is affected by the corner frequency (f_c) of the high-pass filter composed of input resistors (R_{in}) and input capacitors (C_{in}), determined in equation (b).

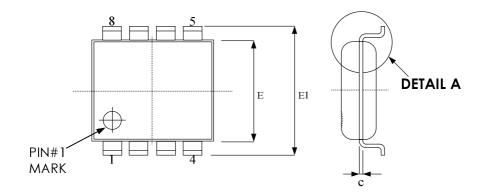

$$Gain = \frac{300k\Omega}{R_{in}} \left(V_V \right) \dots \dots \dots (a)$$

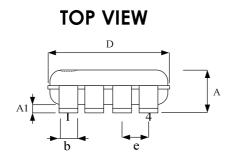
$$f_c = \frac{1}{2\pi R_{in}C_{in}} (Hz) \quad \dots \dots (b)$$

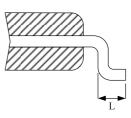

For differential audio signal application, the input capacitors (C_{in}), for DC decoupling, are not required. When single-ended audio source is used, the input capacitors (C_{in}) are required.


• Cost effective application circuit for fully differential input

• Suggested application circuit for fully differential input


• Suggested application circuit for single-ended input

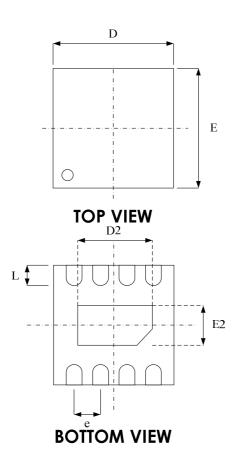


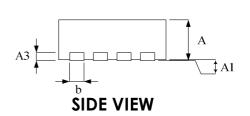


Package Outline Dimensions

• MSOP-8L (118 mil)

SIDE VIEW

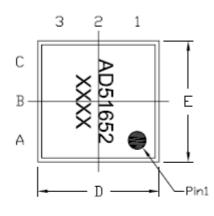

DETAIL A


Symbol	Dimension in mm			
Symbol	Min	Max		
А	0.81	1.10		
A1	0.00	0.15		
b	0.22	0.38		
С	0.13	0.23		
D	2.90	3.10		
Е	2.90	3.10		
E1	4.80	5.00		
е	0.65 BSC			
L	0.40	0.80		

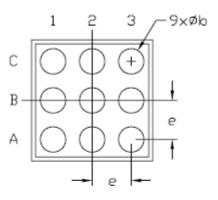
Package Outline Dimensions

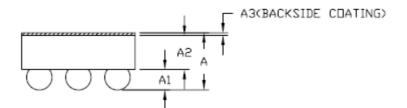
• TDFN - 8L (3x3 mm²)

Symbol	Dimension in mm	
	Min	Max
А	0.7	0.85
A1	0	0.05
А3	0.175	0.25
b	0.25	0.35
D	2.95	3.05
Е	2.95	3.05
e	0.65 BSC	
L	0.3	0.5


Exposed	pad
LAPODOG	puu

	Dimension in mm	
Option 1	Min	Max
D2	1.60	2.50
E2	1.35	1.75
Option 2		
D2	2.20	2.40
E2	1.40	1.70


Package Outline Dimensions


• WCSP - 9L (1.21x1.21 mm²)

TOP VIEW

BOTTOM VIEW

Symbol	Dimension in mm	
	Min	Max
А	0.536	0.634
A1	0.189	0.231
A3	0.022	0.028
D	1.190	1.230
Е	1.190	1.230
b	0.234	0.286
е	0.400	

Revision History

Revision	Date	Description
0.01	2013.11	Draft version.
0.02	2014.03.12	Draft version, updated MP version measurement data into.
0.03	2014.03.14	Draft version, updated WCSP-9L package outline.

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.